
1 Angular distribution of simple decay process

Let’s consider the decay process a → 1 + 2, where a has a total angular mo-
mentum J (which would be it’s spin in rest frame, in which we choose to work)
and spin projection M. In the rest frame we can describe a with the state vector
|J,M〉. We can describe final state by the following state vector |θ, φ, λ1, λ2〉 as
well as with |j,m, λ1, λ2〉, where j is the total angular momentum of the final
state particles and m is the projection of the total angular momentum of those.
Using above and exploiting the conservation of angular momentum we have:

A =
∑

j,m

〈θ, φ, λ1, λ2|j,m, λ1, λ2〉 〈j,m, λ1, λ2|U |JM〉

=
∑

j,m

〈θ, φ, λ1, λ2|j,m, λ1, λ2〉 δmMδjJAλ1λ2

=
∑

j,m

〈θ, φ, λ1, λ2|J,M, λ1, λ2〉Aλ1λ2

(1)

In equation (1) we used:

〈j,m, λ1, λ2|U |JM〉 = δmMδjJAλ1λ2
(2)

If this is right, then even here we see, that we have Aλ1λ2
parameter without M

dependence. This is then shown in equation (B.1.4) in the Richman’s Helicity
Formalism Write-up.

This point is again mentioned in the equation (B.5.13), where the argument
for A not having M (which is λZ) subscript is that 〈λ1λ2|U |M〉 must be rota-
tionally invariant.
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Let’s for the moment assume that above mentioned is right (Aλ1λ2
does not

have M in it) and try to get the full angular distribution for this simple process
when decaying particle is Z gauge boson and product particles are two leptons
(electrons and muons (no taus), which are light enough to assume that they
only have opposite helicities as the result of the decay). So:

dσ

dΩℓ

=
3

4π

∑

λℓℓ

|Aℓℓ|2|
∑

λZ

d1

λZλℓℓ
e−iλZφ|2 (3)

Before I gon into opening these sums let me include here little arithmetics:

|
∑

k

akzk|2 = |
∑

k

(ak(xk + iyk))|2 = |
∑

k

akxk + i
∑

k

akyk|2 =

= |
∑

k

akxk|2 + |
∑

k

akxk|2;

(
∑

k

ak)2 =
∑

i

∑

j≥i

(2 − δij)aiaj

So if zk = eiφk = cos φk + i sin φk we get:

|
∑

k

akeiφk |2 = |
∑

k

(ak(cos φk + i sin φk))|2 = |
∑

k

ak cos φk + i
∑

k

ak sin φk|2 =

=
∑

i

∑

j≥i

(2 − δij)aiaj cos(φi − φj)

Let’s consider λℓℓ = −1 and 1 cases separately just for simplicity:
For λℓℓ = −1

dσ

dΩℓ

=
3

4π
|A−1|2|

∑

λZ

d1

λZ−1
e−iλZφ|2 =

= |A−1|2[(
∑

λZ

d1

λZ−1
)2 + 2

∑

λZ

∑

λZ∗>λZ

d1

λZ−1
d1

λZ∗
−1

cos(λZ − λZ∗i)φ] =

= |A−1|2[(
∑

λZ

d1

λZ−1
)2 + 2[d1

−1−1
d1

0−1
cos φ + d1

−1−1
d1

1−1
cos 2φ + d1

0−1
d1

1−1
cos φ] =

= |A−1|2[(
∑

λZ

d1

λZ−1
)2 + 2[d1

11
d1

1−1
cos 2φ + d1

10
cos φ(d1

1−1
+ d1

1−1
)]

(4)
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For λℓℓ = 1

dσ

dΩℓ

=
3

4π
|A1|2|

∑

λZ

d1

λZ1
e−iλZφ|2 =

= |A1|2[(
∑

λZ

d1

λZ1
)2 + 2

∑

λZ

∑

λZ∗>λZ

d1

λZ1
d1

λZ∗1
cos(λZ − λZ∗i)φ] =

= |A1|2[(
∑

λZ

d1

λZ1
)2 + 2[d1

−11
d1

01
cos φ + d1

−11
d1

11
cos 2φ + d1

01
d1

11
cos φ] =

= |A1|2[(
∑

λZ

d1

λZ1
)2 + 2[d1

11
d1

1−1
cos 2φ − d1

10
cos φ(d1

1−1
+ d1

1−1
)]

(5)

d1

11
=

1 + cos θ

2

d1

10
=

− sin θ√
2

d1

1−1
=

1 − cos θ

2

(6)

From (6) we get:

(
∑

λZ

d1

λZ±1
)2 = 1

d1

11
+ d1

1−1
= 1

d1

11
d1

1−1
=

1 − cos2 θ

2
=

sin2 θ

2

(7)

Using (6) and (7) in (4) and (5) we get:

dσ

dΩℓ

=
3

4π
[|A−1|2[1 +

sin2 θ

2
cos 2φ +

sin θ√
2

cos φ]+

+ |A1|2[1 +
sin2 θ

2
cos 2φ − sin θ√

2
cos φ]]

(8)

So as a result (unless I made a mistake in algebra) we have dependence on
the azimuthal angle. This in general would not be surprising because we have
particle helicity of which cannot be measured, so we sum over its helicities inside
the absolute square. But in this case we should also understand that this does
not have any physical meaning, because there is not any preferred azimuthal
direction to have any kind of distribution other then flat. So this may mean
that my initial assumption of not including λZ in my parameter was wrong.
Now lets try to include λZ in the parameter, redo the calculation and impose
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the physical restriction on the parameters such that any azimuthat dependence
is alyminated. This is something we usually do in physics.

I will make explicit calculations for this case and send them soon. I though
I had them, but I just found a little error.
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